

Modelling a Multi-Faction Conflict in Multi-Domain Operations

NMSG-197 Symposium on *Emerging and Disruptive Modelling and Simulation Technologies to Transform Future Defence Capabilities* 20 – 21 October 2022, Bath GBR

MSG-186, Chris Rolfs, Cervus Defence

Contents

- 1. Introduction
- 2. Multi-Faction Model
- 3. Multi-Domain Model

NATO

OTAN

- 4. Data Farming
- 5. Conclusion

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

MSG-186 Team

Introduction

Basic Lanchester Model

$$\dot{B} = -r R$$
$$\dot{R} = -b B$$

 $\dot{f}(t) = \frac{df}{dt}$: Time derivative B(t): Blue strength at time t R(t): Red strength at time t

Parameters

 $B_0 = B(t_0)$: Initial strength of Blue $R_0 = R(t_0)$: Initial strength of Red b: Blue weapon effectiveness on Red r: Red weapon effectiveness on Blue

Victory condition for Blue:

$$\varphi = \left(\frac{B_0}{R_0}\right)^2 \cdot \frac{b}{r} > 1$$

Multi-Faction Model

Multi-Faction Lanchester Model

$$\dot{B} = -r_b R$$

$$\dot{R} = -b B - g G$$

$$\dot{G} = -r'_g R$$

G(t): Green strength supporting Blue at time t

Additional Parameters

 $G_0 = G(t_0)$: Initial strength of Green g: Green weapon effectiveness on Red $r'_g = r_g - \alpha$, where:

 r_g : Red weapon effectiveness on Green

 α : Rate of support by Green to Blue

Victory condition for Blue:

$$\rho > 1 + \left(\frac{B_0}{R_0}\right)^2 \cdot \frac{g}{r_b} \left(\frac{r'_g}{r_b} - 2\frac{G_0}{R_0}\right)$$

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Multi-Faction Model

MSG-197, 21 October 2022, Bath, GBR

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Multi-Faction Model

MSG-197, 21 October 2022, Bath, GBR

Multi-Domain Model

Information (Cyber) Domain[†]

Blue force composed of a peer-topeer network of systems:

 $B(t) = B_1(t) + B_2(t) + B_3(t)$

 B_1 : Susceptible to cyber attacks B_2 : Infected by cyber attacks B_3 : Immune to cyber attacks NOTE: Red, Green forces not affected

Implications

Cyber domain: 3 possible transitions:

- $B_1 \rightarrow B_2$: Virus infection, rate β_V $B_2 \rightarrow B_3$: Immunization, rate β_A
- $B_1 \rightarrow B_3$: Immunization, rate β_A

Physical domain: infected systems B_2 are less effective:

 $b_{r,A} > b_{r,V}$

H. C. Schramm, D. P. Gaver, Lanchester for cyber: the mixed epidemic-combat model, Wiley online library, 2013

Multi-Faction, Multi-Domain Model

- Conflict in physical/cyber domains
- Numerical solution required
- 13 parameters: $B_1(t_0), B_2(t_0), B_3(t_0), R(t_0), G(t_0), B_1(t_0), B_2(t_0), B_3(t_0), R(t_0), G(t_0), G(t_0)$
- Victory condition?
- Conditions for which cyber attacks play a relevant role?

Multi-Faction, Multi-Domain Model

Multi-Faction, Multi-Domain Model

Data Farming

- Simulation:
 - Blue Win = $MFMDM(\alpha, b_{r,A}, b_{r,V}, \beta_A, g_r, B_{10}, B_{20}, B_{30}, G_0; r_b, r_g, \beta_V, R_0)$
 - Decision parameters x 9, Noise parameters x 4
 - Include **uncertainty**: $g_r \sim \Gamma(k_{g_r}, \theta_{g_r})$ with $k_{g_r} = x_1, \theta_{g_r} = x_2$ etc.
 - Decision factors x 14, Noise parameters x 7
- Data Farming:
 - Build a decision factor meta-model robust to noise factors
 - **MOE**: Prob(Blue Win) = $y \approx f(x_1, ..., x_{14}; n_1, ..., n_7)$
- Design of Experiment:
 - Depends on the analytical **objective** (see next)

First Analytical Objective

- When we fail, **why** do we fail? (understanding cause and effect):
 - Prob(Blue Win) = $y \approx f(x_1, ..., x_{14}; n_1, ..., n_7)$
 - $-2^{nd} \operatorname{Order} f(): \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \cdots$
 - Main effect (β_1), two-factor interaction (β_{12}), curvature (β_{22})
- Design of Experiment:
 - To fit meta-model: Nearly Orthogonal Latin Hypercube (1003 runs)
 - For Noise factors: OLH (17 replications)
 - Both are space-filling designs
 - Total 17,051 experiments! (Data Farming)
 - US Naval Postgraduate School spreadsheets

Second Analytical Objective

- What is required to succeed? (identifying optimal decisions):
 - Prob(Blue Win) = $y \approx f(x_1, ..., x_{14}; n_1, ..., n_7)$
 - $-(x_{1}^{*},...,x_{14}^{*}) = d^{*} = \operatorname{argmax} \iiint f(x_{1},...,x_{14}|n_{1},...,n_{7})\partial n_{1}...\partial n_{7}$
- Design of Experiment:
 - Use 17,051 NOLH/OLH design, or ... Sequential experimental design?!
 - Initial batch design d_1, \ldots, d_n which yields y_1, \ldots, y_n
 - Next design point: $\boldsymbol{d}_{n+1}^* = \operatorname{argmax} EI\{f(d_{n+1}|\boldsymbol{d}_1, \dots, \boldsymbol{d}_n, y_1, \dots, y_n)\}$

 Expected Improvement: balance between exploitation and exploration

Conclusion

Summary

- Probabilistic Lanchester model
- Multi-Faction (Blue, Red, Green)
- Multi-Domain (cyber infection and immunization)
- Derivation of victory conditions:
 - Analytical
 - Numerical

Future Work

- Enhanced Data Farming techniques:
 - Sequential experimental design
 - Automated Machine learning
- Societal domain (public opinion)
- Address high level questions:
 - When we fail, why do we fail?
 - What is required to succeed?

Chris Rolfs Chief Technology Officer

Cervus Defence Porton Science Park, Bybrook Road, Porton Down, Salisbury, SP4 OBF, UK

Tel.: +44 (0) 7932 649 925 chris.r@cervus.ai

NATO H OTAN